Vibration Simulation Analysis of a Vehicle Mounted Control Terminal for Certain Equipment

SUN Zhonghui, XIE Long, LI Dong, LI Hongwei, WANG Zhiwen, ZHENG Xuxiang

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 36-42.

PDF(2351 KB)
PDF(2351 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 36-42. DOI: 10.7643/ issn.1672-9242.2025.10.005
Weapons Equipment

Vibration Simulation Analysis of a Vehicle Mounted Control Terminal for Certain Equipment

  • SUN Zhonghui1, XIE Long2, LI Dong1, LI Hongwei1, WANG Zhiwen1, *, ZHENG Xuxiang1
Author information +
History +

Abstract

To solve the problems in assessment and evaluation of a vehicle mounted terminal for certain equipment, the work aims to evaluate the equipment vibration performance through tests and finite element simulations. With the vibration test of a certain type of equipment vehicle mounted control terminal as an example, a finite element simulation model of the vehicle mounted terminal was established, the response of the model under conventional vibration test conditions was analyzed, and the results were compared with the vibration test to verify the effectiveness of the model. At the same time, by considering the two actual boundary conditions of the vehicle terminal, the dynamic characteristics of the vehicle mounted terminal were clarified through modal analysis, harmonic response analysis, and random vibration, guiding the optimization of vibration environment testing. The vertical load spectrum was used to analyze the vibration response of the center position on the surface of the product through the test bench and simulation model. The comparative analysis results showed an average simulation accuracy of 90.6%, which verified the effectiveness of the finite element model. By analyzing the dynamic results under two boundary conditions, it was found that the vertical excitation excited more natural frequencies, and the vibration response without guide rail constraints was more severe. The test evaluation should focus on the vertical intensity of the product and comprehensively consider the vibration under two working conditions, in order to fully understand the vibration performance of the product under different working conditions.

Key words

vibration test / finite element simulation / modal analysis / harmonic response analysis / vehicle mounted equipment

Cite this article

Download Citations
SUN Zhonghui, XIE Long, LI Dong, LI Hongwei, WANG Zhiwen, ZHENG Xuxiang. Vibration Simulation Analysis of a Vehicle Mounted Control Terminal for Certain Equipment[J]. Equipment Environmental Engineering. 2025, 22(10): 36-42 https://doi.org/10.7643/ issn.1672-9242.2025.10.005

References

[1] 刘永才. 新形势下武器装备发展思考[J]. 战术导弹技术, 2020(4): 1-12.
LIU Y C.Thoughts on the Development of Weapons and Equipment under the New Situation[J]. Tactical Missile Technology, 2020(4): 1-12.
[2] 孟二龙, 高桂清, 董浩, 等. 武器装备智能化发展思考[J]. 兵工自动化, 2021, 40(6): 12-15.
MENG E L, GAO G Q, DONG H, et al.Thinking on Intelligent Development of Weapon Equipment[J]. Ordnance Industry Automation, 2021, 40(6): 12-15.
[3] 胡金锁, 张迎, 葛玉, 等. 陆军武器装备建设智能化转型思考[J]. 国防科技, 2019, 40(4): 20-24.
HU J S, ZHANG Y, GE Y, et al.Thinking of the Intelligent Tranformation of the the Army Equipment Construction[J]. National Defense Technology, 2019, 40(4): 20-24.
[4] 韦正现. 智能装备试验与测试的挑战与对策思考[J]. 测控技术, 2021, 40(2): 1-5.
WEI Z X.Challenge and Countermeasure of Intelligent Equipment Experiment and Test[J]. Measurement & Control Technology, 2021, 40(2): 1-5.
[5] 蔡健平, 张萌, 赵婉. 装备典型舰载平台振动环境严酷度分析[J]. 装备环境工程, 2015, 12(1): 87-92.
CAI J P, ZHANG M, ZHAO W.Severity Analysis of Typical Shipboard Vibration Environment for Materiel[J]. Equipment Environmental Engineering, 2015, 12(1): 87-92.
[6] 刘学斌, 丁光雨, 郑兴帅, 等. 武器装备典型故障和环境效应统计分析[J]. 装备环境工程, 2022, 19(4): 46-53.
LIU X B, DING G Y, ZHENG X S, et al.Statistical Analysis of Typical Faults and Environmental Effects of Weapons and Equipment[J]. Equipment Environmental Engineering, 2022, 19(4): 46-53.
[7] 丛子龙, 孙嘉徽, 高智敏, 等. 船舶装备复杂振动环境试验剖面分析方法及其应用[J]. 船舶工程, 2024, 46(8): 86-92.
CONG Z L, SUN J H, GAO Z M, et al.Analysis Method and Application of Complex Vibration Environment Test Profiles for Marine Equipment[J]. Ship Engineering, 2024, 46(8): 86-92.
[8] 傅耘, 张建军, 李明, 等. 关于环境工程数字化转型的思考[J]. 装备环境工程, 2024, 21(5): 13-23.
FU Y, ZHANG J J, LI M, et al.Reflections on Digital Transformation of Environmental Engineering[J]. Equipment Environmental Engineering, 2024, 21(5): 13-23.
[9] 赵艳涛, 陈耀, 李健, 等. 单轴虚拟振动试验技术研究[J]. 装备环境工程, 2023, 20(4): 115-121.
ZHAO Y T, CHEN Y, LI J, et al.Uniaxial Virtual Vibration Test Technology[J]. Equipment Environmental Engineering, 2023, 20(4): 115-121.
[10] 孙涛, 皮志超, 罗立生, 等. 某机载显示器振动试验夹具设计[J]. 机械工程与自动化, 2021(3): 107-109.
SUN T, PI Z C, LUO L S, et al.Design of Vibration Test Fixture for Airborne Display[J]. Mechanical Engineering & Automation, 2021(3): 107-109.
[11] 杨静, 彭超, 王晓红. 某系统级电子装备随机振动试验方案优化技术[J]. 电子机械工程, 2016, 32(3): 5-7.
YANG J, PENG C, WANG X H.Optimization Technology for Random Vibration Test Scheme of System-Level Electronic Equipment[J]. Electro-Mechanical Engineering, 2016, 32(3): 5-7.
[12] 骆政波, 张忠洁, 潘志国, 等. 单轴向宽带随机基础激励下高频钎焊导管振动疲劳分析研究[J]. 振动与冲击, 2025, 44(15): 116-124.
LUO Z B, ZHANG Z J, PAN Z G, et al.Vibration Fatigue Analysis of High-Frequency Brazed Pipe under Uniaxial Broadband Random Foundation Excitation[J]. Journal of Vibration and Shock, 2025, 44(15): 116-124.
[13] 张学敏, 张雪茹, 李厚补, 等. 基于有限元模拟的非金属智能连续管承压力学行为研究[J]. 中国塑料, 2025, 39(8): 62-68.
ZHANG X M, ZHANG X R, LI H B, et al.Mechanical Behavior of Non-Metallic Intelligent Coiled Tubing under Internal Pressure Based on Finite Element Simulation[J]. China Plastics, 2025, 39(8): 62-68.
[14] 侯瑞, 陈国平. 振动台虚拟试验的建模和仿真研究[J]. 力学季刊, 2008, 29(2): 254-258.
HOU R, CHEN G P.Simulation and Modeling Research
of Virtual Experiment on Electromagnetic Vibration Shaker[J]. Chinese Quarterly of Mechanics, 2008, 29(2): 254-258.
[15] 程辉, 梁珂, 李伟, 等. 车载精密设备三维隔振系统设计、仿真及试验研究[J]. 中国工程机械学报, 2025, 23(2): 309-314.
CHENG H, LIANG K, LI W, et al.Design and Simulation Study of Three-Dimensional Vibration Isolation System for Vehicle-Mounted Precision Equipment[J]. Chinese Journal of Construction Machinery, 2025, 23(2): 309-314.
[16] 王俊杰, 邱显焱. 弹性车轮动刚度与随机振动疲劳仿真分析[J]. 湖南工业大学学报, 2024, 38(5): 62-69.
WANG J J, QIU X Y.A Fatigue Simulation Analysis of Dynamic Stiffness and Random Vibration of Resilient Wheels[J]. Journal of Hunan University of Technology, 2024, 38(5): 62-69.
[17] 谢莹莹, 王洪雨, 金鑫. 基于实测谱的转向架支架随机振动仿真分析及结构改进[J]. 城市轨道交通研究, 2024, 27(5): 30-34.
XIE Y Y, WANG H Y, JIN X.Bogie Bracket Random Vibration Simulation Analysis and Structural Improvement Based on Field-Measured Spectrum[J]. Urban Mass Transit, 2024, 27(5): 30-34.
[18] 刘艳欣, 周志卫, 任向前, 等. 机载悬挂装置虚拟振动试验技术研究[J]. 航空科学技术, 2022, 33(3): 111-118.
LIU Y X, ZHOU Z W, REN X Q, et al.Research on Virtual Vibration Test Technology of Airborne Store Suspension[J]. Aeronautical Science & Technology, 2022, 33(3): 111-118.
[19] 周建, 王珺, 马啸宇. 基于联合仿真技术的虚拟振动试验平台建设[J]. 火箭推进, 2017, 43(4): 46-50.
ZHOU J, WANG J, MA X Y.Construction of Virtual Vibration Testing Platform Based on Co-Simulation Technology[J]. Journal of Rocket Propulsion, 2017, 43(4): 46-50.
[20] 刘闯, 冯咬齐, 岳志勇. 虚拟振动试验与真实试验相关性分析[J]. 装备环境工程, 2009, 6(4): 1-4.
LIU C, FENG Y Q, YUE Z Y.Correlation Analysis between Virtual and Real Vibration Test[J]. Equipment Environmental Engineering, 2009, 6(4): 1-4.
PDF(2351 KB)

Accesses

Citation

Detail

Sections
Recommended

/